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[1] MISO, "Future of Grid Operations and Markets: Uncertainty Management”, 2021
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[2] MISO, "MISO Market Design Overview and Evolution”, 2019
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SCADA/AGC:
Communicate plant
output instructions/

Deploy regulation reserve
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RAC: Reliability Assessment Commitment
LAC: Look-Ahead Commitment

SCADA: Supervisory Control and Data Acquisition
SE: State Estimator

RTCA: Real-Time Contingency Analysis

AGC: Automatic Generation Control

A4 oAl (0|2 MISO AH)) [2]
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min > CY(p:)
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B:
st. P, <p; <Py

Vi€ T,

A ()
where ZFP = {p; > 0}. Power System

- A2 DE WHT|9L BEHe SUR 2MO| AL 0f AUR| %S
oz A = ot =z 2 OLO| BFAHSH A Ol 300 MW 150 MW
- FAHBH ZL, AS0IM FHBEI| e ZFLE HYO| LT 4 AUS iy B
Mz EH oHA: 100 MW
150 ¢
Dy = 400 MW
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BASIA - 2 H|R 2|45 |
=HET - SIS s Sending End Receiving End
: [ [
min > C!(p) s0) )

i€T
pl' ql
—_—
Az —
plf qlf
- dHARIJYHA (Power Flow Equation)
. Us(1)£0s vr@£0r()
f = leg(l) — vs(l)vr(l) [Gl COS(QS(l) - er(l)) + Bl sm(@s(l) - Qr(l))], Vie Ll ° s " i
= le?(l) — vs(l)vr(l) [Gl COS(@S(Z) - HT(Z)) — Bl sin(@s(l) — HT(Z))], Vie Ll
Bsh .
g’ =—(B+ Tl)vi(l) + vsyVry [Bi cos(0sqy — b0ry) — Gusin(bsy — 0,))], VIEL
sh . w2 : M2 conductance
g’ =—(Bi+ 21 Yz + Vs@yrn) [Breos(Osqy — Opy) + Grsin(0sq) — 0ry)], VIeL | 02 oA . M2 susceptance |
o REZF A s(l) :& : 5 susceptance !
() M2 EF oA

W2+ (@2 < (F)?, Viecr
P2+ ()2 < (F)?, Viecr

_____________________

10



AC 2|H{=F/A

A (AC Optimal Power Flow)

1€1y l:s(l)=b

2 4 )

i€y l:s(l)=b
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It tf _
b — Z b =
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C = {pi,vp > 0; |0p] <0}
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Economic Dispatch
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DC Optimal Power Flow
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1€
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AC Optimal Power Flow
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[3] D. Kirschen, “Fundamentals of Power System Economics, Second Edition”, 2018
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KPG-193 TestGrid

KPG-193 TestGrid

¢ 2022"&% 7|%2§ St —g—&%l-% El:élaolgl_} AI%:-!I”%
- 19371 24 /12271 &A7| /35970 SHMZ

- 3ME ALZ0Z ALESH Open-source Model [4]

v KPG193_VER1_5

v [@ mustoff
R b ad A oy (3
v [@ network
v [@ location
F3 bus_location.csv } 24 '?‘lil ('?‘lE, 7045)
v @ m
< KPG193_ver1_5.m }
v @ mat HES 3 ¢|o|g (MATPOWER)
[ KPG193_ver1_5.mat
v [@ profile
> B commitment_decision 7
> @@ demand - Eﬁﬂf%' |_‘_-||0|E-|
> BB renewables ('| A2t l:_l-_?_|l Z 876OA||7_|-)
> BB weather —

v [@ renewables_capacity
f3 hydro_generators_2022.csv
f3 solar_generators_2022.csv — Ell\jtaﬁ ZHAOH01|L_-|R| _g.E'ék
f5 wind_generators_2022.csv
@ LICENSE

[4 Song, G., & Kim, J., “KPG 193: A Synthetic Korean Power Grid Test System for Decarbonization Studies”, 2024

I Coal
LNG

Nuclear

Wind

Solar
B Hydro

765kV (AC)
345kV (AC)

154KV (AC)
500kV (DC)

24



Julia2| JuMP TH7|2|Z O| &gl 2| X3} 2T

#
51 # Build and Solve ED Model = =
s z| X3t A - 34 =4

m = Model(HiGHS.Optimizer)

Yy H
0¥ &
s rx
4> e

avariable(m, pglg in 1:n_gens] = 0)

i
JN
ot
e
‘_L\

=

=

. g .
SED E Cz (i)
€T

aconstraint(m, gen_pmax[g in 1:n_gens], Gen_Pmin[g] < pglg] < Gen_Pmax[g])
| B
@constraint(m, power_balance,
sum(pg[g] for g in 1:n_gens) = sum(Demand))

63 @objective(m, Min,
64 sum(Gen_Cost[g][1] * pglgl™2 + Gen_Cost[gl[2] * pglg] + Gen_Cost[g][3] >
65 for g in 1:n_gens)) =

Jjo
b
09}
4>

12
N
]
e A
-
10
N
ry
)
O
W
AN
T

optimize!(m)

“script/solve_ed.jl”

ox
rg
4>
=
=
@D
3
[1]
e
@)
|
~—
=
V
o
——



Julia®] PowerModels.jl Ij7 || Z O| &3t 2| H 2 F ALt M

17 #

18 # Configuration “SCI‘ipt/SO|VE_Opf.j|”
19 #
20

DaY(1 ""365) Dil 21 solve_day = 1

22 data_dir = "data/KPG193_verl_5"

KPG193 Z=2 MH 23

OPTIMAL POWER FLOW SPECIFIC

N
~
TR R R R

31 include("../src/prepare_opf.jl")

33 # Prepare OPF data

KPG1 93 _ 34 mn_data = prepare_opf(
Cj|O|E{ & 22| 35 data_dir,

36 num_hours = NUM_HOURS,
37 day = solve_day
- 38 )
39
ZIZ_‘!_{_E_?:"& 40 # Solve the multi-network OPF problem
ASH { 41 # result = solve_mn_opf(mn_data, DCPPowerModel, Ipopt.Optimizer) # DC OPF _
T o 42 result = solve_mn_opf(mn_data, ACPPowerModel, Ipopt.Optimizer) # AC OPF ——F ]IH9|Z|7|- 725%5! ﬁﬁ'\_, Z-"Qf_%_?il %142!'_1\_% zf%gg Dl_l-E—'—T]

A println("Optimization terminated with status: $(result["termination_status"])")
45 println("Objective value: $(result["objective"])")

[5] C. Coffrin et al., “PowerModels.jl: An Open-Source Framework for Exploring Power Flow Formulations”, 2018
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generator_id dispatchP_MW dispatchQ_MVAR

1
3
4
5

10

12

13

19

21

24

25

28

29

30

31

RS L WU WL U U WL WL (S UL W L WL WS UL (I W I WL U §

880.0000087
509.2427063
823.5170852
880.0000087
440.0000044
770.0000076
880.0000088
780.1306095
880.0000087
677.3388821
770.0000077
536.9026038
690.5758344
675.9594278
573.5513808

-111.498772
-111.498772
29.40093263
28.11399495
-66.9401476
-385.0000016
-179.432117
-23.6697983
-23.6697983
-70.34659923
-54.17739951
108.766627
90.48454491
90.48454491
90.48454491

“results/opf/dispatch/dispatch_results.csv’

Generation by Fuel Type (Day 1)

100
[ Nuclear
N Coal
[ LNG

80 Renewable

Hour

“results/opf/graph/generation_by_fuel.png”

AGMworkshop 2025 27



Juliag &8¢t AIS232 A=l

1 1 1 1 =20 of 7 7;"= AS
Julia®| UnitCommitment.jl {7 |X| S O| &5t 7| sHX| A=l +~H
14 #
15 # Configuration
16 #
17
DaY(1 ~365) U_zl 18 solve_day = 1

19 data_dir = joinpath("data", "KPG193_verl_&4")

KPG193 A MA 20

o =20 0
22 #
23 #
24 # UNIT COMMITMENT SPECIFIC
25 #
2%
27
— 28 include(joinpath("..", "src", "prepare_uc.jl"))

29
30 network_output_file = joinpath("results", "uc", "network", "kpgl93_uc_day$(solve_day).json")
31
;2 # Prepare UC data

33 uc_data = prepare_uc(
KPG 1 93 34 data_dir,
EllolE-'I Z‘l i‘l EI = 35 num_hours = NUM_HOURS,
—_ 36 day = solve_day,
37 output_path = network_output_file
38 )
39
40 # Load instance and build optimization model
41 instance = UnitCommitment.read(network_output_file)
- 42
- 43 model = UnitCommitment.build _model( >
= 44 instance = instance,
7|%2°‘| ZI 71'%! 45 optimizer = HiGHS.Optimizer,
—_ 46 formulation = UnitCommitment.Formulation(
El:él AOHL°'| 47 transmission = UnitCommitment.ShiftFactorsFormulation()
48 )
_ 49 )
50
= 1l
7I%Z°-|ZI7'"-3|-I 52 scenario = instance.scenarios[1]
A%H { 53 UnitCommitment.optimize!(model)
T o F
55 println("Optimization terminated with status: $(termination_status(model))")

[6] Alinson S. Xavier, Feng Qiu, "UnitCommitment.jl: A Julia/JuMP Optimization Package for Security-Constrained Unit Commitment », 2020

“script/solve_uc.jl”

D727t ZEH=, Al

28



IS8R A= Al 25t

/|

“hour generator_id status
1 95
2 95
3 95
4 95
5 95
6 95
7 95
8 95
9 95

10 95
1 95
12 95
13 95
14 95
15 95

“results/uc/commitment/commitment_results.csv”

OO0 O O O O = = b e e e e e -

dispatch_MW initial_status

400
400
400
400
400
400
400
400
400

(=R = R o R« i« R =]

9
10
1
12
13
14
15
16
17

GW

100

80

60

40

20

Supply and Demand (Day 2)

Demand
Available Capacity

Hour

“results/uc/graph/supply_and_demand.png”

20
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[7] Morales-Espaiia, G., Latorre, J. M., & Ramos, A., "Tight and compact MILP formulation for the thermal unit commitment problem", 2013
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[7] Morales-Espaiia, G., Latorre, J. M., & Ramos, A., "Tight and compact MILP formulation for the thermal unit commitment problem", 2013
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